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Abstract. The nonlinear dynamics of towed two-wheeled trailers is in-
vestigated using a spatial, 4-DoF model. Namely, the yaw, pitch, and
roll motions are all taken into account. Geometrical nonlinearities and
the non-smooth characteristics of the tire forces are considered. A lin-
ear state feedback controller with feedback delay is designed to enhance
the stability performance of the trailer. Numerical bifurcation analysis
is performed to investigate the large amplitude vibrations and unsafe
(bistable) zones, where the stable rectilinear motion and the stable limit
cycle coexist with each other. The effects of the control gain and the
feedback delay of the controller are presented on bifurcation diagrams.
It is shown, that with appropriately chosen control gains, the size of the
bistable region can be limited.
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1 Introduction

Vehicle handling and stability are critical factors in road transportation; hence,
they became relevant research topics a long time ago, see e.g. [1], [2], [3] and
[4]. Unfortunately, several road accidents happen due to the not appropriately
chosen amount of payload or payload position, which easily leads to the so-called
snaking and rocking motions of trailers. Most of the previous studies are limited
to linear stability analysis and are based on single-track (in-plane) models. In
this study, we focus on the nonlinear dynamics of two-wheeled trailers, using a
spatial mechanical model.

2 Mechanical Model and Control Design

The applied spatial, 4-DoF mechanical model is shown in Fig. 1(a). The trailer
is towed with constant towing speed v. For the sake of simplicity, the towing
car is imitated by a lateral spring and damper at the kingpin A. The motion of
the system can be described with the yaw angle ψ, the pitch angle ϑ, the roll
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angle φ, and the lateral displacement of the king pin u. Details of the derivation
of the governing equations can be found in [5]. Here, we only present the different
sources of the relevant nonlinearities and non-smoothness.

Figure 1(b) shows the non-smooth characteristics of the suspension forces.
A piecewise smooth formula is introduced for the right FR = Fs(dR) and the
left FL = Fs(dL) suspension forces, where dR is the distance measured between
the points R and R′, and dL is the distance measured between points L and
L′, see panel (a) of Fig. 1. We take into account that the right or left tire can
detach from the ground, and the related vertical load NR or NL becomes zero.
We neglect the effect of the unsprung mass by considering zero masses for the
wheels. Hence, zero normal load corresponds to zero suspension forces in our
model. In Fig. 1(b), Lmax relates to the maximal length of the suspension, i.e.,
where the suspension is fully expanded. In addition, for d < Lmin, we consider
higher stiffness and damping for the full compression case.
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Fig. 1. (a) The towed two-wheeled trailer with the braking force at the right wheel,
(b) the schematic non-smooth characteristic of the suspension forces

The effect of the tires is taken into account by means of the lateral tire forces
only, which are calculated based on Pacejka’s Magic Formula [6]:

µ(α) = D sin (C arctan (Bα− E (Bα− arctan(Bα)))) , (1)

where B, C, D and E are semi-empirical factors, and α is the side slip angle of
the right (αR) and the left (αL) wheel. With these, the tire forces are

F tire
R = NR µ(αR) , F tire

L = NL µ(αL) . (2)

Namely, we assume that the lateral tire forces depend linearly on the vertical
loads. In addition, we neglect the dependencies of the factors of the Magic For-
mula on the static and dynamic coefficients of friction, the temperature, and the
camber angle.

To control the snaking motion of the trailer, we design a linear state feedback
controller, which operates with the braking forces applied to the right and the
left wheels, see Fig. 1(a). We consider braking forces proportional to the yaw
rate ψ̇ and take into account the deadzone 2ψ̇0 of the controller, where no braking
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force is actuated. Furthermore, we consider the feedback delay τ of the controller.
Thus, the non-smooth characteristics of the right and left braking forces can be
formulated as

F brake
R =

{
D(ψ̇(t− τ)− ψ̇0) , if ψ̇(t− τ) > ψ̇0 ,

0 , if ψ̇(t− τ) < ψ̇0 ,
(3)

F brake
L =

{
−D(ψ̇(t− τ) + ψ̇0) , if ψ̇(t− τ) < −ψ̇0 ,

0 , if ψ̇(t− τ) > −ψ̇0 ,
(4)

where D is the control gain. The non-smooth characteristics of the tire forces
and the braking forces are handled by a smoothed Heaviside-function in our
numerical investigation, see, e.g. [5]. Since we investigate the straight running of
the two-wheeled trailer, the reference yaw rate is set to zero in this study.

For the sake of simplicity, we do not implement the combined slip in the
model. However, we pay attention to the relation between the longitudinal forces
(i.e., the braking forces), the lateral tire forces, and the vertical loads. Namely,
we define the required coefficients of friction µreq,R and µreq,L as

µreq,R =

√(
F brake
R

)2
+
(
F tire
R

)2
NR

, µreq,L =

√(
F brake
L

)2
+

(
F tire
L

)2
NL

. (5)

3 Nonlinear Stability Analysis

Nonlinear bifurcation analysis is carried out with DDE-BIFTOOL [7]. The stable
and unstable periodic solutions are depicted in bifurcation diagrams, in the plane
of the towing speed v and the maximum amplitudes of the yaw angle ψ, the pitch
angle ϑ, the roll angle φ, and the lateral displacement of the king pin u, see Fig. 2.
Based on the continuation, one can observe that the pitch motion is asymmetric.
Thus, both the max/min values of the periodic solutions are illustrated for ϑ. The
results are shown for parameter values described in [5], but for vertical payload
position of h = 0.27m. The half-width of the deadzone was ψ̇0 = 0.1 rad/s in
this study.

In the bifurcation diagrams, dashed red lines and solid blue lines refer to
unstable and stable motions, respectively. For every branch point of the periodic
solutions, the required coefficients of friction of Eq. (5) are calculated. During
the continuation of the bifurcation branch, if µreq,R and/or µreq,L reaches the
pre-defined threshold µcr = 1, we define the corresponding branch point as the
limit of validity. The remaining segment of the bifurcation branch is plotted thin
and gray, namely, we consider it invalid.

The bifurcation diagrams in Fig. 2 are constructed for the delay-free case
(i.e., τ = 0) for different control gains. For the uncontrolled case (i.e., D = 0),
a relatively wide bistable region is present, where the stable rectilinear motion
coexists with unstable and stable periodic solutions. It is considered an unsafe
zone since the global stability of the rectilinear motion is not ensured in this
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linearly stable towing speed range, and large enough perturbations may lead to
unwanted large amplitude vibrations of the trailer. By increasing the control
gain, the width of the unsafe zone and the amplitudes of the vibrations are
decreased.
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Fig. 2. Bifurcation diagrams with respect to the towing speed v for the delay-free
controller (τ = 0) and for different control gains: a) D = 0, b) D = 5000Ns, c)
D = 10000Ns

In Fig. 3, numerical results are presented for points P1 and P2 of Fig. 2(b).
Namely, the periodic solutions for the normal loads, the tire forces, the braking
forces, and three of the generalized coordinates (ψ, φ, and u) are plotted for
one period T of the oscillation. Point P1 corresponds to the point of the stable
branch with smaller amplitudes and towing speed of v = 47.22m/s. As can be
observed in Fig. 3(a), no loss of contact of tires happens for this point, i.e., no
rocking motion occurs. In addition, the tire forces, the braking forces, and the
amplitudes of the vibrations remain moderate. Point P2 corresponds to the point
of the stable branch with larger amplitudes and towing speed of v = 50.35m/s.
Both full compression and full expansion of the wheel suspension happen, and
loss of contact of tires also occurs, see Fig. 3(b). Furthermore, the tire forces,
the braking forces, and the amplitudes of the vibrations are remarkably larger.

The effect of the feedback delay τ is shown in the bifurcation diagrams of
Fig. 4 for a fixed value of the control gain D = 5000Ns. As shown, it significantly
affects the nonlinear stability properties. The unsafe zone is narrower, and the
amplitudes of the corresponding periodic solutions are smaller for larger feedback
delay values. This is a counterintuitive result since it suggests that the feedback
delay can be beneficial. Of course, a very large delay (i.e., τ ≥ 0.2 s) degrades
the performance of the controller.
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Fig. 3. Numerically determined time histories of the normal loads, the tire forces, the
braking forces and the generalized coordinates ψ, φ, and u, for control gainD = 5000Ns
and feedback delay τ = 0. Panels refer to the points marked in Fig. 2(b).
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Fig. 4. Bifurcation diagrams with respect to the towing speed v for fixed control gain
(D = 5000Ns) and for different feedback delays: a) τ = 0, b) τ = 0.05 s, c) τ = 0.1 s
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4 Conclusions

In this study, we performed nonlinear stability analysis of the spatial mechanical
model of towed two-wheeled trailers. A linear state feedback controller with feed-
back delay was designed to reduce the unwanted vibrations of snaking trailers.
The deadzone and the feedback delay of the controller were taken into account.
For the uncontrolled case, a considerably wide unsafe zone (a so-called bistable
region) can be observed. It was shown that this unsafe zone can be reduced by
applying braking forces to the wheels. In addition, some feedback delays may
have some beneficial effects on global stability.
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